a2 United States Patent

US009158593B2

(10) Patent No.: US 9,158,593 B2

Kurabayashi 45) Date of Patent: Oct. 13,2015
(54) LOAD BALANCING SCHEME 2011/0078303 Al 3/2011 Lietal
2011/0238948 Al 9/2011 Vorbach et al.
(71) Applicant: Empire Technology Development LLC, 2012/0271964 Al 1072012 Porter
Wilmington, DE (US)
OTHER PUBLICATIONS
(72) Inventor: Shuichi Kurabayashi, Fujisawa (IP) Oracle Real Application Clusters (RAC) 11g Release 2, An Oracle
(*) Notice: Subject to any disclaimer, the term of this White Paper Nov. 2010, . 20 pages. _http://www'orade'com
atent is extended or adjusted under 35 technetwork/database/clustering/overview/index html.
% S.C. 154(b) by 217 days International Search Report from International Application No. PCT/
R M Y- US12/70063 mailed Feb. 26, 2013.
. The Cisco Global Cloud Index Forecast and Methodology, 2010-
(21) Appl. No.: 13/885,394 2015 white paper, Nov. 29, 201 1., http://www.cisco.com/en/US/so-
lutions/collateral/ns34 1/ns/525/ns537/ns705/ns1175/Cloud__In-
(22) PCTFiled: Dec. 17,2012 dex White Paperhtml. e
Oracle Real Application Clusters, http://www.oracle.com/
(86) PCTNo.: PCT/US2012/070063 technetwork/database/clustering/overview/index html, Nov. 2010.
§371 (c)(1) Kazuo Goda, Takayuki Tamura, Masato Oguchi, Masaru
AN Kitsuregawa: Run-Time Load Balancing System on SAN-connected
(2) Date: May 14, 2013 PC Cluster for Dynamic Injection of CPU and Disk Resource—A
(87) PCT Pub. No.: W0O2014/098790 Case Study of Data Mining Appll.catlon. DEXA 2002: 182-192.
(Continued)
PCT Pub. Date: Jun. 26, 2014
(65) Prior Publication Data Primary Examiner — Qing Wu
US 2014/0173624 Al Jun. 19, 2014 (74) Attorney, Agent, or Firm — Brundidge & Stanger, P.C.
(51) Imt.ClL
GOGF 9/50 (2006.01) (57) ABSTRACT
GO6F 17/30 2006.01 . . .
() Technologies are generally described for load balancing
HO4L 29/08 (2006.01)
(52) US.Cl scheme in a cloud computing environment hosting a mobile
S) device. In some examples, a load balancer may include mul-
CPC s GOGF 9/5083 (2013.01), GOGF 9/505 tiple request processing units, each of the multiple request
(2013.01); HO4L 67/1002 (2013.01); GO6F processing units comprising a network socket that is con-
1730132 (2013.01); G0G601;]{“72/;?§/055(22() 01 13 3001 l) ; nected to at least one application server and at least one cache
. . . (D) server and a programmable processor configured to process a
(58) Field of Classification Search cache request from one of the at least one application server,
None lication file f | b hi a performance checking unit configured to measure process-
See application file for complete search history. ing loads of the programmable processors, and a processor
(56) References Cited managing unit configured to adjust the processing loads by

2003/0158940 Al
2008/0091845 Al

U.S. PATENT DOCUMENTS

8/2003 Leigh
4/2008 Mills et al.

RECEIVING CACHE REQUEST

8310
DETERMINE
WHETHER DATA REGARDING
CACHE REGUEST
EXISTS
NO

WRITE LOAD BALANCING PROGRAM

writing or deleting a load balancing program in at least one of
the programmable processors.

24 Claims, 6 Drawing Sheets

TRANSMIT ADDRESS OF CACHE
SERVER 850

8370

MEASURE PROCESSING LOAD S340

8380

INGREASE
NUMBER OF

‘ COMPARE PROCESSING LOAD |—~3350

DECREASE
NUMBER OF

P E
PROGESSORS

5360
DETERMINE
WHETHER PROCESSING
LOAD IS LARGER THAN
PREDETERMINED
VALUE
[YES

E
PROCESSORS

US 9,158,593 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

P. H. W. Leong, “Recent Trends in FPGA Architectures and Appli-
cations,” in 4th IEEE International Symposium on Electronic Design,
Test and Applications (delta 2008), 2008, pp. 137-141.

J. Wang, Y. Xie, C. Zhu, Z. Zhao, and C. Han, “An Embedded Load
Balancing System for High Speed OC192 Networks,” in 2009 Inter-
national Conference on Embedded Software and Systems, 2009, pp.
587-592.

L. Hark and A. Kayssi, “FPGA-based load balancer for Internet
servers,” in The 14th International Conference on Microelectronics,
2002, pp. 190-193.

V. V. Kindratenko, R. J. Brunner, and A. D. Myers, “Dynamic load-
balancing on multi-FPGA systems: a case study,” p. 8, Nov. 2007.
J. Phillips, M. Areno, B. Eames, and A. Dasu, “An FPGA-Based
Dynamic Load-Balancing Processor Architecture for Solving
N-body Problems,” in Proc. of the 10th High-Performance Embed-
ded Computing (HPEC), 2006.

U.S. Patent Oct. 13, 2015 Sheet 1 of 6 US 9,158,593 B2

110-1 110-2 110-3 110-P
7 74 4 4
A
140
y ~
CONNECTION HANDLER
[[
I 120-1 120-2 120—-m
ed i |
APPLICATION APPLICATION APPLICATION
SERVER SERVER e SERVER

'\
[160
‘ ~

LOAD BALANGER

L] |

CACHE CACHE CACHE GACHE
SERVER SERVER SERVER Tt SERVER
< < S AN
1501 150-2 150-3 150-n
130
/
DATABASE

SERVER

US 9,158,593 B2

Sheet 2 of 6

Oct. 13, 2015

U.S. Patent

091

09¢— 43N0
082—1 LINN DNDIDIHD FONYINHO3d
0ve— LINN DNIDYNYIN 4OSSIO0Md
082 3svavivd
022 AJON3W
1IX00S MHOMLAN 134008 YHOMLIN IIND0S HHOMLIN
. i .
1-08¢ ¢-08¢ 1-08¢
d40S53004d cee 40SS3004d HOSS3004d
P F1aYNNYYD0Ud P F19VINNYEO OUd P J1AVYWAYIO0Ud
4-0L¢ ¢-0L¢C 1-0L¢
1NN 1IN LINn
p DNISS30O0Ud 1S3ND3Y p DNISS3004d 1S3n03Y P DNISSA00YHd LSANOM
4-012 ¢-01¢ 1-01¢

LOAD IS LARGER THAN
PREDETERMINED

U.S. Patent Oct. 13, 2015 Sheet 3 of 6 US 9,158,593 B2
RECEIVING CACHE REQUEST L S300
DETERMINE
WHETHER DATA REGARDING YES
CACHE REQUEST
EXISTS
WRITE LOAD BALANCING PROGRAM |—S320
A
TRANSMIT ADDRESS OF CACHE
SERVER —5330
-
MEASURE PROCESSING LOAD |—S340
8370 $380
-~ -~
INCREASE DECREASE
NUMBER OF COMPARE PROCESSING LOAD |—S350 NUMBER OF
PROGRAMMABLE PROGRAMMABLE
PROCESSORS PROCESSORS
S360
DETERMINE
WHETHER PROCESSING NO

U.S. Patent Oct. 13, 2015 Sheet 4 of 6 US 9,158,593 B2

FIG. 4

ANALYZE CACHE REQUEST —S400

'

DETERMINE LOAD BALANCING

PROGRAM —5410
TRANSLATE LOAD BALANGING | ¢,

PROGRAM

'

WRITE LOAD BALANCING PROGRAM |—S5430

US 9,158,593 B2

Sheet 5 of 6

Oct. 13, 2015

U.S. Patent

TTTTTTTTT T R 1 [CTTTTTTTTTTT T T T T T T T T 1

me===="
=
=
o
L
=
[72]
=
=
-
<T
=
=
=
=
=
Q
(&
=
=
[]
i
=
L
e
o
=
[}
[ad
Q
(&
i
(2.4
=
=
[
Ly
=
L
—
[=a]
=<
[an]
<C
Ll
T
o
Ll
}—
=
o
=
(=]
(]

P
IS

o

1S3N03Y HOVI IHL OL INIANOJSIHYOD V1VQ FHL SFHOLS LVHL HIAYIS
JHOVO 3NO LSV LY FHL 40 INO FHL 40 SSIHAQY NV HIAYIS NOLLYOI1ddY INO
1SY37 1V 3HL 40 ANO IHL 0L "ONILLINSNYHL 404 SNOLLONY LSNI F4OW HO INO

43AH3S JHOVO ANO LSV LY 40 INO DNILYNDISIA A8 1S3INOIY JHOVI
3HL STIANVH LYHL WY4D0Hd DNIONYTVE QY01 Y 'SH0SSIO0Hd J19VINWYHDO0Yd
40 ALINYYNTd IHL 40 INO OLNI DNILIIM HO4 SNOLLONYLSNI FHON HO 3NO

H3AH3S NOILVOINddV INO 1SV
1V 40 3NO WOH4 1S3N03Y FHIVD V ONIAIFOFH 404 SNOLLONYLSNI JHOW ¥O INO

40 INO 1Sv31 LY

08

WNIQIN DNIYY3E TYNDIS

¢0S

19ndoyd Wydd0yd 431NdW0I

00§

S OIA

US 9,158,593 B2

{298)

IS10IA30
OMLLAAN0O

4AHL0

=N

-~

Sheet 6 of 6

Oct. 13, 2015

U.S. Patent

& N

|
_
|
|
|

J w9 (%9
F9)H0aK duTTioNINGD] oy
WROD | Y] SHOMLIN | heo
(349)S301A30 NOLLYOINNINACD
9
A IoN N0
JOVAIIIN
ey TV
0 5, =
(o Tioninos
" 30V 3N
WIS
(FHOSI0VHLNG TYEIHAHA
(0S8N
() ONISS300Md |
J @8 QG ”
NisiiHod -
MY 1 e
(Y ONISSTOONd
STHAYED

_! EFEISI0IAZG INdLNO

{7E9)SNG JOVIUILNE FDVHOILS

™

a:i;i,,,;i:.i:f e ——— .

1
i

9SNE 30VIHIIN

{1

A

. o e g
M - — .}.\r. -
) . (G0N "29) {6h0/03 59 |
HITIQUING | {89)9DY¥013 (SR939VM0IS |
V43 LN/SN8 | 18YADNIH-NON THVAORIY |
M,\m (03SI0IATA FOVHOLS
W
{800ISNS AMOKIN
,,,,,,,,, M w}i;;j
B b || (aNIVO WvE00ud
FITIOUINGD AJOKIN] !
it _
Qosssoy | ||
| (929)SNOLLIPMISNE
f19)dST/Ndd/ Y)
3400 HOSS400dd {2INOLLYOT IddY
1219 1018;
IHOYD | | IHOYD |
¢ 1IATY H13AT0 | (029WISAS DNLLYYAO
dsa/afgn : ‘ ;ﬁ _&\gm
{509M0SSI00Hd ,
M _ (SOBIAB0WIN WILSAS
e]
(ZOINOLLYENDLNGD DISYS
{O0B)A0IA30 DNILANOD

US 9,158,593 B2

1
LOAD BALANCING SCHEME

CROSS-REFERENCE TO RELATED
APPLICATION

This Applicationis a U.S. National Stage Application filing
under 35 U.S.C. §371 of International Application No. PCT/
US12/70063, filed on Dec. 17, 2012.

BACKGROUND

Load balancing is a computer networking methodology to
distribute workload across multiple computers or a computer
cluster, network links, central processing units, disk drives, or
other resources, to achieve optimal resource utilization, maxi-
mize throughput, minimize response time, and avoid over-
load. As applications by which a large number of users share
data of a relatively large size on a cloud datacenter increase,
a load balancer may be required to efficiently process data
traffic between computation nodes and storage nodes.

SUMMARY

In an example, a load balancer may include multiple
request processing units, each comprising a network socket
that is connected to at least one application server and at least
one cache server, and a programmable processor configured
to process a cache request from one of the at least one appli-
cation server. The load balancer further comprises a perfor-
mance checking unit configured to measure processing loads
of the programmable processors and a processor managing
unit configured to adjust the processing loads by writing or
deleting a load balancing program in at least one of the pro-
grammable processors.

In another example, a method performed under control of
a load balancer including multiple programmable processors
may include receiving a cache request from one of at least one
application server; writing, into one of the plurality of pro-
grammable processors, a load balancing program that
handles the cache request by designating one of at least one
cache server; and transmitting, to the one of the at least one
application server, an address of the one of the at least one
cache server corresponding to the cache request.

In yet another example, a computer-readable storage
medium may store thereon computer-executable instructions
that, in response to execution, cause a load balancer including
multiple programmable processors to perform operations
including receiving a cache request from one of at least one
application server; writing, into one of the plurality of pro-
grammable processors, a load balancing program that
handles the cache request by designating one of at least one
cache server; and transmitting, to the one of the at least one
application, server an address of the one of the at least one
cache server corresponding to the cache request.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more apparent from the following description and
appended claims, taken in conjunction with the accompany-
ing drawings. Understanding that these drawings depict only

10

15

20

25

30

35

40

45

50

55

60

65

2

several embodiments in accordance with the disclosure and
are, therefore, not to be considered limiting of its scope, the
disclosure will be described with additional specificity and
detail through use of the accompanying drawings, in which:

FIG. 1 schematically shows an illustrative example of an
environment in which a load balancer provides a load balanc-
ing scheme between multiple application servers and mul-
tiple cache servers, arranged in accordance with at least some
embodiments described herein;

FIG. 2 shows a schematic block diagram of an illustrative
example of a load balancer, arranged in accordance with at
least some embodiments described herein;

FIG. 3 shows an example flow diagram of a process for
providing a load balancing scheme, arranged in accordance
with at least some embodiments described herein;

FIG. 4 shows an example flow diagram of a process for
writing a load balancing program into a programmable pro-
cessor, arranged in accordance with at least some embodi-
ments described herein;

FIG. 5 illustrates computer program products that may be
utilized to provide a load balancing scheme, arranged in
accordance with at least some embodiments described herein;
and

FIG. 6 is a block diagram illustrating an example comput-
ing device that may be utilized to provide a load balancing
scheme, arranged in accordance with at least some embodi-
ments described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the drawings, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatuses, systems, devices, and computer program prod-
ucts related to a load balancing scheme. Further, technologies
are generally described for a load balancer configured to
provide load balancing between multiple application servers
and multiple cache servers.

In some embodiments, a cloud-based network system may
include at least three server layers including, for example,
multiple application servers configured to handle requests
from user devices, multiple cache servers configured to
handle data caching for the multiple application servers, and
a cloud database server configured to store and provide data
for use by the multiple application servers. In such cases, a
load balancer may be configured to balance loads between the
multiple application servers and the multiple cache servers to
resolve a communication bottleneck between the multiple
application servers and the multiple cache servers.

The load balancer may employ thereon multiple program-
mable processors, which are connected to respective network
sockets. The load balancer may dynamically write a load
balancing program for performing load balancing into one of
the programmable processors. In some embodiments, an
application may be executed through one of the multiple

US 9,158,593 B2

3

application servers, and the one of the multiple application
servers may request of the load balancer data regarding the
running of the application. In such cases, the load balancer
may write into one of the programmable processors a load
balancing program, which is an application-specific program
according to one or more characteristics of the application.
The one or more characteristics of the application may be
decided by the type of the application (e.g., whether the
application is an e-mail application, a game application, an
SNS service providing application, an e-book application, a
map application, a video playing application, etc.). By way of
example, but not limitation, video playing applications or
game applications may be characterized that they require
more data transmission than e-mail applications and SNS
service providing applications. The load balancing program
may be required to handle the application considering such
characteristics.

By way of example, but not limitation, when the user
device runs an application for playing a video that is stored in
the cloud database server, a corresponding application server
may request of the load balancer the video that is stored in the
cloud database server. Then, the load balancer may write into
one of the multiple programmable processors a load balanc-
ing program of a type adapted to cache the video in one of the
multiple cache servers thus making it possible for the user
device to play the video smoothly. In some other examples,
when the user device run an application for a social network-
ing service (or “SNS”) via a corresponding application server,
the load balancer may proactively write into one of the mul-
tiple programmable processors a load balancing program of a
type that is adapted to preferentially store information data
viewed by a greater number of users in one the multiple cache
servers. By way of such customized load balancing, it may be
possible to efficiently manage data caching according to one
or more characteristics of the application.

In some embodiments, the load balancer may measure a
processing load of each of the multiple programmable pro-
cessors. When the processing load is concentrated on a spe-
cific programmable processor, the load balancer may increase
the number of programmable processors for the processing
load by writing a corresponding load balancing program into
one or more of the multiple programmable processors. Alter-
natively, when the programmable processor for the process-
ing load exhibits low load balancing cost, that is, when a
surplus calculation power of the programmable processor is
great, the load balancer may reduce the number of program-
mable processors for the processing load. In this way, the
number of programmable processors allocated to a specific
processing load may be automatically adjusted.

FIG. 1 schematically shows an illustrative example of an
environment in which a load balancer provides a load balanc-
ing scheme between multiple application servers and mul-
tiple cache servers, arranged in accordance with at least some
embodiments described herein. As depicted in FIG. 1, one of
user devices 110-1, 110-2, 110-3, .. ., 110-p may send to one
of application servers 120-1, 120-2, . . ., 120-m a request for
application-related data, which may be stored in a database
server 130, via a connection handler 140. Further, one of
cache servers 150-1, 150-2, . . . , 150-z may cache the appli-
cation-related data from database server 130, and a load bal-
ancer 160 may process the request for application-related
data. By way of example, but not limitation, the request may
include an HTTP (Hypertext Transfer Protocol) request such
as, for example, an HTTP GET request or an HTTP POST
request.

In some embodiments, connection handler 140 may allo-
cate or assign the request from the one of user devices 110-1,

20

35

40

45

50

55

60

65

4
110-2,110-3, .. .,110-p to the appropriate one of application
servers 120-1, 120-2, . . . , 120-m. In some embodiments,

connection handler 140 may allocate or assign the request
based at least in part on processing loads of application serv-
ers 120-1, 120-2, . .., 120-m.

In some embodiments, database server 130 may store data
for various applications, and cache servers 150-1, 150-2, . ..,
150-7 may cache at least some of the data stored in database
server 130. By way of example, but not limitation, database
server 130 may be a cloud datacenter, and cache servers
150-1, 150-2, . . ., 150-» may be in-memory cache servers.

In some embodiments, a load balancer 160 may employ
thereon multiple programmable processors (not shown in
FIG. 1), which may be respectively connected to network
sockets (not shown in FIG. 1). Load balancer 160 may
dynamically write a load balancing program for performing
load balancing into one of the multiple programmable pro-
cessors. In such cases, the load balancing program may be an
application-specific program corresponding to one or more
characteristics of the application. The load balancing pro-
gram may be a program that determines how to store data in
cache servers 150-1, 150-2, . . . , 150-%. Since a single cache
server store data beyond the memory storage capacity, mul-
tiple cache servers 150-1, 150-2, .. ., 150-% are employed. In
order to improve responsiveness to the application, the data
likely to be used for cache servers 150-1, 150-2, . . . , 150-»
may be selectively maintained in the cache memory. How-
ever, because it may be difficult to predict how long certain
data will go unused by an application, load balancer 160 may
perform the load balancing using the load balancing program
that reflects the one or more characteristics of the application.
By way of example, but not limitation, the one or more
characteristics may include data access tendency of the appli-
cation, which may refer to how often the application requests
data stored in database server 130, or what kind of data (e.g.,
a document, an audio, a video, an image, etc.) the application
requests from database server 130.

In some embodiments, load balancer 160 may automati-
cally measure a load of each of the multiple programmable
processors. When a load of a specific programmable proces-
sor (which is processing a request from an application)
exceeds a threshold value (e.g., when the load balancing cost
exceeds 1/0O cost and/or application cost), the number of pro-
grammable processors assigned to the request from the appli-
cation may be increased. But when the programmable pro-
cessor processing the request from the application shows a
low load balancing cost (i.e., the surplus calculation power of
the programmable processors is great), the number of pro-
grammable processors allocated to the load balancing process
of the application may be decreased. In this way, the number
of' programmable processors allocated to each application can
be adjusted automatically.

FIG. 2 shows a schematic block diagram of an illustrative
example of load balancer 160, arranged in accordance with at
least some embodiments described herein. As depicted, load
balancer 160 may include multiple request processing units
210-1, 210-2, . . ., 210-%, a memory 220, a database 230, a
processor managing unit 240, a performance checking unit
250 and a compiler 260. Although illustrated as discrete com-
ponents, various components may be divided into additional
components, combined into fewer components, or eliminated
altogether while being contemplated within the scope of the
disclosed subject matter.

Each of request processing units 210-1, 210-2, . . ., 210-r
may include a programmable processor 270-1, 270-2, .. ., or
270-r and a network socket 280-1, 280-2, . . ., or 280-~ Each
of' programmable processors 270-1,270-2, . . ., 270-r may be

US 9,158,593 B2

5

configured to process a cache request from one of application
servers 120-1,120-2, . .., 120-m. In some embodiments, each
of programmable processors 270-1, 270-2, . . . , 270-4 may
analyze the cache request as to its characteristics and, as will
be described below in more details, provide the analysis
results to processor managing unit 240 so that processor
managing unit 240 may select a load balancing program that
is adapted to process the cache request according to the char-
acteristics. By way of example, but not limitation, program-
mable processors 270-1, 270-2, . . ., 270-r may be an FPGA
(Field Programmable Gate Array). Each of network sockets
280-1, 280-2, . . ., 280-» may be connected to one or more of
application servers 120-1,120-2, . . ., 120-m and one or more
of cache servers 150-1, 150-2, . .., 150-n.

Memory 220 may store multiple load balancing programs
for processing a cache request from one or more of applica-
tionservers 120-1,120-2, ..., 120-m. By way of example, but
not limitation, the multiple load balancing programs may be
application-specific programs according to one or more char-
acteristics of applications. Each of the load balancing pro-
grams determines how to store data in one or more of cache
servers 150-1, 150-2, .. ., 150-n.

In some embodiments, each of network sockets 280-1,
280-2, . . ., 280-r may receive a cache request from one or
more of application servers 120-1, 120-2, . . ., 120-m, and
each of programmable processors 270-1, 270-2, . . ., 270-~
may analyze the cache request. By way of example, but not
limitation, programmable processors 270-1,270-2, .. ., 270-7
may analyze the cache request and check whether there exists
a cache server (among cache servers 150-1,150-2, . .., 150-n)
in which data related to the cache request is stored. If there is
a cache server that stores the data related to the cache request,
an IP address of the corresponding cache server (among cache
servers 150-1, 150-2, . . ., 150-z) is returned to the one or
more of application servers 120-1, 120-2, . . ., 120-m. On the
other hand, if there is no cache server that stores the data
corresponding to the cache request, a value of NULL is
returned to the one or more of application servers 120-1,
120-2, ..., 120-m.

Database 230 may be configured to record information
regarding a relationship between the cache request and the
cache server (among cache servers 150-1, 150-2, . . ., 150-n)
that stores the data corresponding to the cache request. By
way of example, but not limitation, when cache server 150-1
stores data related to a cache request from application server
120-1, a data packet of relationship information including the
cache request, an TP address of application server 120-1 and
an IP address of cache server 150-1 may be recorded in
database 230.

Processor managing unit 240 may adjust the processing
loads by writing or deleting a load balancing program in one
ormore of programmable processors 270-1,270-2, .. .,270-~
In some embodiments, when the value NULL is returned
because there is no cache server corresponding to the cache
request, processor managing unit 240 may write into one of
programmable processors 270-1, 270-2, . . ., 270-r a load
balancing program that handles the cache request by desig-
nating one or more of cache servers 150-1, 150-2, . .., 150-n.
Thereafter, the corresponding programmable processor
(among programmable processors 270-1, 270-2, . . ., 270-r)
may send one or more IP addresses of the one or more of
cache servers 150-1,150-2, . . . , 150-# to the one of applica-
tion servers 120-1, 120-2, . . ., 120-m that transmitted the
cache request.

In some embodiments, the load balancing program written
into the one of programmable processors 270-1, 270-2, . . .,
270-7 by processor managing unit 240 may be an application-

10

15

20

25

30

35

40

45

50

55

60

65

6

specific program determined based at least in part on an
analysis of the cache request by the one of programmable
processors 270-1, 270-2, . . ., 270-~ By way of non-limiting
example, the one of programmable processors 270-1,
270-2, . . ., 270-r may analyze the cache request and deter-
mine that the cache request relates to a video transmission
service, and processor managing unit 240 may proactively
write into the one of programmable processors 270-1,
270-2, . . ., 270-r a load balancing program (among the
multiple load balancing programs stored in memory 220) of a
type adapted to store the moving picture in a cache server.

Performance checking unit 250 may be configured to mea-
sure processing loads of programmable processors 270-1,
270-2, . ..,270-~ In some embodiments, performance check-
ing unit 250 may compare a processing load of each of pro-
grammable processors 270-1, 270-2, . . . , 270-r with a pre-
determined value. By way of example, but not limitation, the
predetermined value may be either an I/O cost or an applica-
tion cost, whichever is smaller, or may be the sum of the I/O
cost and the application cost. Processing managing unit 240
may then adjust the load of each programmable processors
270-1,270-2,. .., 270-r based at least part on the comparison.
That is, performance checking unit 250 may measure a
throughput of each of programmable processors 270-1, 270-
2,...,270- and if a delay of a certain amount of time is
detected, processing managing unit 240 may change the num-
ber of programmable processors 270-1, 270-2, . . . , 270-r
assigned to the corresponding application.

Compiler 260 may translate the load balancing program
into a bitstream representing configuration information of
programmable processors 270-1, 270-2, . . ., 270-% In some
embodiments, in response to a request from performance
checking unit 250, processor managing unit 240 may acquire,
from memory 220, a load balancing program for an applica-
tion and write the load balancing program in one or more of
programmable processor 270-1,270-2, . . ., 270-~ By way of
example, but not limitation, compiler 260 may translate the
load balancing program written by HDL into a bitstream
representing configuration information of the one or more of
programmable processors 270-1, 270-2, . . ., 270-~

FIG. 3 shows an example flow diagram of a process for
providing a load balancing scheme, arranged in accordance
with at least some embodiments described herein. The
method in FIG. 3 may be implemented in or by load balancer
160, which may include multiple request processing units
210-1, 210-2, . . ., 210-%, a memory 220, a database 230, a
processor managing unit 240, a performance checking unit
250 and a compiler 260 discussed above. An example process
may include one or more operations, actions, or functions as
illustrated by one or more blocks S300, S310, S320, S330,
S340, S350, S360, S370 and/or S380. Although illustrated as
discrete blocks, various blocks may be divided into additional
blocks, combined into fewer blocks, or eliminated, depending
on the desired implementation. In the below description with
regard to FIG. 3, the process will be described mainly using
request processing unit 210-1 (including programmable pro-
cessor 270-1 and network socket 280-1), application server
120-1 and cache server 150-1 for the convenience of expla-
nation. However, one skilled in the art would appreciate that
the process can also be implemented by other components.
Processing may begin at block S300.

At block S300 (Receiving Cache Request), request pro-
cessing unit 210-1 may receive a cache request from applica-
tion server 120-1 through network socket 280-1. By way of
example, but not limitation, the cache request may include an
HTTP (Hypertext Transfer Protocol) request such as, for

US 9,158,593 B2

7

example, an HTTP GET request or an HTTP POST request.
Processing may continue from block S300 to block S310.

Atdecision block S310 (Determine Whether Data Regard-
ing Cache Request Exists), request processing unit 210-1 may
determine whether the data corresponding to the cache
request exists in cache servers 150-1, 150-2, . . . , 150-n.
Processing may continue from block S310 to block S320,
upon a negative determination, or to block S330, upon a
positive determination.

Atblock S320 (Write Load Balancing Program), when it is
determined that data regarding the cache request does not
exist in cache servers 150-1, 150-2, . . . , 150-n, processor
managing unit 240 may write a load balancing program that
may handle the cache request into programmable processor
270-1 by designating cache server 150-1, which is available
for handling the cache request. Processing may continue from
block S320 to block S330.

At block S330 (Transmit Address of Cache Server), pro-
grammable processor 270-1 may transmit, to application
server 120-1, an address of cache server 150-1 designated by
programmable processor 270-1. In some embodiments, if the
data regarding the cache request exists in one of cache servers
150-1,150-2, . ..,150-, programmable processor 270-1 may
transmit, to application server 120-1, an address of the one of
cache servers 150-1, 150-2, . . ., 150-z that stores the data
regarding the cache request. Processing may continue from
block S330 to block S340.

At block S340 (Measure Processing Load), performance
checking unit 250 may measure a processing load of pro-
grammable processor 270-1. Processing may continue from
block S340 to block S350.

At block S350 (Compare Processing [L.oad), performance
checking unit 250 may compare the processing load with a
predetermined value. Processing may continue from block
S350 to block S360.

At block S360 (Determine Whether Processing Load is
Larger Than Predetermined Value), performance checking
unit 250 may determine whether the processing load is larger
than the predetermined value. By way of example, but not
limitation, the predetermined value may be either an 1/O cost
or an application cost, whichever is smaller, or may be the
sum of the I/O cost and the application cost. Processing may
continue from block S360 to block S370 or S380.

At block S370 (Increase Number of Programmable Pro-
cessors), if the processing load is larger than the predeter-
mined value, processor managing unit 240 may increase the
number of programmable processors assigned to the cache
request from application server 120-1. In some embodiments,
processor managing unit 240 may increase the number of
programmable processors for the cache request by simply
copying the loading balancing program from programmable
processor 270-1 and writing it into another programmable
processor. By way of example, but not limitation, compiler
260 may translate the load balancing program written by
HDL into a bitstream representing configuration information
of the other programmable processor.

At block S380 (Decrease Number of Programmable Pro-
cessors), if the processing load is not larger than the prede-
termined value, processor managing unit 240 may decrease
the number of programmable processors assigned to the
cache request from application server 120-1. In some
embodiments, processor managing unit may decrease the
number of programmable processors for the cache request by
simply deleting the load balancing program in programmable
processor 270-1.

FIG. 4 shows an example flow diagram of a process for
writing a load balancing program into a programmable pro-

25

30

35

40

45

55

65

8

cessor, arranged in accordance with at least some embodi-
ments described herein. The method in FIG. 4 may be imple-
mented in or by load balancer 160, which may include
multiple request processing units 210-1, 210-2, . .., 210- a
memory 220, a database 230, a processor managing unit 240,
a performance checking unit 250 and a compiler 260 dis-
cussed above. An example process may include one or more
operations, actions, or functions as illustrated by one or more
blocks S400, S410, S420 and/or S430. Those blocks are sub-
blocks of block S320 of FIG. 3, and thus, the below descrip-
tion may be related with and/or based on the above descrip-
tion with regard to FIG. 3. Although illustrated as discrete
blocks, various blocks may be divided into additional blocks,
combined into fewer blocks, or eliminated, depending on the
desired implementation. Processing may begin at block S400.

At block S400 (Analyze Cache Request), programmable
processor 270-1 may analyze the cache request from appli-
cation server 120-1. Processing may continue from block
S400 to block S410.

At block S410 (Determine Load Balancing Program), pro-
cessor managing unit 240 may select a load balancing pro-
gram from the multiple load balancing programs stored in
memory 220 based at least in part on the analysis of program-
mable processor 270-1. By way of example, but not limita-
tion, when the cache request is related with an SNS service (as
a result of the analysis), processor managing unit 240 may
choose a load balancing program of a type adapted to prefer-
entially cache information used and/or subscribed by a
greater number of users in a cache server. Processing may
continue from block S410 to block S420.

At block S420 (Translate Load Balancing Program), com-
piler 260 may translate the load balancing program selected
by processor managing unit 240 into a bitstream representing
configuration information of programmable processor 270-1.
Processing may continue from block S420 to block S430.

Atblock S430 (Write Load Balancing Program), processor
managing unit 240 may write into programmable processor
270-1 the load balancing program determined by processor
managing unit 240 and translated by compiler 260.

One skilled in the art will appreciate that, for this and other
processes and methods disclosed herein, the functions per-
formed in the processes and methods may be implemented in
differing order. Furthermore, the outlined steps and opera-
tions are only provided as examples, and some of the steps
and operations may be optional, combined into fewer steps
and operations, or expanded into additional steps and opera-
tions without detracting from the essence of the disclosed
embodiments.

FIG. 5 illustrates computer program products that may be
utilized to provide a load balancing scheme, arranged in
accordance with at least some embodiments described herein.
Program product 500 may include a signal bearing medium
502. Signal bearing medium 502 may include one or more
instructions 504 that, when executed by, for example, a pro-
cessor, may provide the functionality described above with
respect to FIGS. 1-4. By way of example, instructions 504
may include: one or more instructions for receiving a cache
request from one of at least one application server, writing,
into one of the plurality of programmable processors, a load
balancing program that handles the cache request by desig-
nating one of at least one cache server, and transmitting, to the
one of the at least one application server, an address ofthe one
of'the at least one cache server that stores the data correspond-
ing to the cache request. Thus, for example, referring to FIG.
2, load balancer 160 may undertake one or more of the blocks
shown in FIG. 3 in response to instructions 504.

US 9,158,593 B2

9

In some implementations, signal bearing medium 502 may
encompass a computer-readable medium 506, including, but
not limited to, a hard disk drive, a CD, a DVD, a digital tape,
memory, etc. In some implementations, signal bearing
medium 502 may encompass a recordable medium 508,
including, but not limited to, memory, read/write (R/W) CDs,
R/W DVDs, etc. In some implementations, signal bearing
medium 502 may encompass a communications medium
510, including, but not limited to, a digital and/or an analog
communication medium (e.g., a fiber optic cable, a
waveguide, a wired communications link, a wireless commu-
nication link, etc.). Thus, for example, program product 500
may be conveyed to one or more modules of load balancer
160 by an RF signal bearing medium 502, where the signal
bearing medium 502 is conveyed by a wireless communica-
tions medium 510 (e.g., a wireless communications medium
conforming with the IEEE 702.11 standard).

FIG. 6 is a block diagram illustrating an example comput-
ing device that may be utilized to provide a load balancing
scheme, arranged in accordance with at least some embodi-
ments described herein. In a very basic configuration 602,
computing device 600 typically includes one or more proces-
sors 604 and a system memory 606. A memory bus 608 may
be used for communicating between processor 604 and sys-
tem memory 606.

Depending on the desired configuration, processor 604
may be of any type including but not limited to a micropro-
cessor (LP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 604 may
include one more levels of caching, such as a level one cache
610 and a level two cache 612, a processor core 614, and
registers 616. An example processor core 614 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. An example memory controller 618 may also be
used with processor 604, or in some implementations
memory controller 618 may be an internal part of processor
604.

Depending on the desired configuration, system memory
606 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 606 may include an operating system 620, one
or more applications 622, and program data 624. Application
622 may include instructions 626 that may be arranged to
perform the functions as described herein including the
actions described with respect to the load balancer 160 archi-
tecture as shown in FIG. 3 or including the actions described
with respect to the flow charts shown in FIGS. 3 and 4. In
some examples, application 622 may be arranged to operate
with program data 624 on an operating system 620 such that
implementations for instructions for an electronic device as
described herein.

Computing device 600 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 602 and any required
devices and interfaces. For example, a bus/interface control-
ler 630 may be used to facilitate communications between
basic configuration 602 and one or more data storage devices
632 via a storage interface bus 634. Data storage devices 632
may be removable storage devices 636, non-removable stor-
age devices 638, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example

20

25

40

45

55

10

computer storage media may include volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 606, removable storage devices 636 and
non-removable storage devices 638 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
600. Any such computer storage media may be part of com-
puting device 600.

Computing device 600 may also include an interface bus
640 for facilitating communication from various interface
devices (e.g., output devices 642, peripheral interfaces 644,
and communication devices 646) to basic configuration 602
via bus/interface controller 630. Example output devices 642
include a graphics processing unit 648 and an audio process-
ing unit 650, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 652. Example peripheral interfaces 644
include a serial interface controller 654 or a parallel interface
controller 656, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 658. An example communication device 646
includes a network controller 660, which may be arranged to
facilitate communications with one or more other computing
devices 662 over a network communication link via one or
more communication ports 664.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 600 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 600 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the

US 9,158,593 B2

11

foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds, compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

10

30

40

45

55

12

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” and the like
include the number recited and refer to ranges which can be
subsequently broken down into subranges as discussed
above. Finally, as will be understood by one skilled in the art,
arange includes each individual member. Thus, for example,
agroup having 1-3 cells refers to groups having 1, 2, or 3 cells.
Similarly, a group having 1-5 cells refers to groups having 1,
2,3, 4, or 5 cells, and so forth.

From the foregoing, it will be appreciated that various
embodiments of the present disclosure have been described
herein for purposes of illustration, and that various modifica-
tions may be made without departing from the scope and
spirit of the present disclosure. Accordingly, the various
embodiments disclosed herein are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.

What is claimed is:

1. A load balancer, comprising:

a plurality of request processing units, each of the plurality

of request processing units comprising:

a network socket that is connected to at least one appli-
cation server and at least one cache server, and

aprogrammable processor configured to process a cache
request from one of'the at least one application server;

a performance checking unit configured to measure pro-

cessing loads of the programmable processor; and

a processor managing unit configured to adjust the mea-

sured processing loads by writing or deleting a load
balancing program in at least one of the programmable
processors.

2. The load balancer of claim 1, wherein the programmable
processor is an FPGA (Field Programmable Gate Array).

3. The load balancer of claim 1, further comprising:

a memory configured to store a plurality of load balancing

programs,
wherein the network sockets are each configured to receive
the cache request and the programmable processors are
further configured to analyze the cache request, and

wherein the processor managing unit is further configured
to select the load balancing program from the plurality
of load balancing programs based at least in part on the
analysis of the cache request.

4. The load balancer of claim 1, wherein the programmable
processors are further configured to check whether data cor-
responding to the cache request exists in the at least one cache
server.

5. The load balancer of claim 4, wherein the programmable
processors are further configured, responsive to a determina-
tion that the data corresponding to the cache request exists in
the at least one cache server, to transmit, to the one of the at
least one application server, an address of the cache server
that stores the data corresponding to the cache request.

US 9,158,593 B2

13

6. The load balancer of claim 5, further comprising:

a database configured to record relationship information of
the cache request and the cache server that stores the data
corresponding to the cache request.

7. The load balancer of claim 4, wherein the processor
managing unit is further configured, responsive to a determi-
nation that the data corresponding to the cache request exists
in the atleast one cache server, to write in one of the program-
mable processors the load balancing program that handles the
cache request by designating one of the at least one cache
server, and

wherein the one of the programmable processors is config-
ured to transmit, to the one of the at least one application
server, an address of the one of the at least one cache
server designated by the load balancing program.

8. The load balancer of claim 1, wherein the performance
checking unit is further configured to compare processing
load of each of the programmable processors with a prede-
termined value, and

wherein the processing managing unit is further configured
to adjust the load of each of the programmable proces-
sors based at least part on the comparison.

9. The load balancer of claim 1, wherein the at least one

cache server is connected to a cloud datacenter.

10. The load balancer of claim 1, further comprising:

a compiler configured to translate the load balancing pro-
gram into a bitstream representing configuration infor-
mation of the at least one of the programmable proces-
sors, and

wherein the processor managing unit is further configured
to write the bitstream in the at least one of the program-
mable processors.

11. A method performed under control of a load balancer
including a plurality of programmable processors, compris-
ing:

receiving a cache request from one of at least one applica-
tion server;

measuring processing load of each of the plurality of pro-
grammable processors;

writing, into one of the plurality of programmable proces-
sors, a load balancing program that adjusts the process-
ing load based at least in part on the measured processing
load, the load balancing program handling the cache
request by designating one of at least one cache server;
and

transmitting, to the one of the at least one application
server, an address of the one of the at least one cache
server corresponding to the cache request.

12. The method of claim 11, further comprising:

determining whether the data corresponding to the cache
request exists in the at least one cache server.

13. The method of claim 11, further comprising:

comparing the processing load with a predetermined value;
and adjusting the processing load based at least in part on
the comparing.

14. The method of claim 13, wherein the adjusting com-

prises writing the load balancing program into at least one of
the plurality of programmable processors.

5

20

25

30

35

40

45

14

15. The method of claim 11, wherein the programmable
processor is an FPGA (Field Programmable Gate Array).

16. The method of claim 11, wherein the at least one cache
server is connected to a cloud datacenter.

17. The method of claim 11, further comprising:

recording, in a database of the load balancer, relationship

information of the cache request and the one of the at
least one cache server.

18. The method of claim 11, further comprising:

analyzing the cache request; and

determining the load balancing program from a plurality of

load balancing programs based at least in part on the
analyzing.

19. The method of claim 11, further comprising:

translating the load balancing program into a bitstream

representing configuration information of the one of the
plurality of programmable processors,

wherein the writing includes writing the bitstream into the

one of the plurality of programmable processors.

20. A computer-readable storage medium having stored
thereon computer-executable instructions that, in response to
execution, cause a load balancer including a plurality of pro-
grammable processors to perform operations, comprising:

receiving a cache request from one of at least one applica-

tion server;

measuring processing load of each of the plurality of pro-

grammable processors;

writing, into one of the plurality of programmable proces-

sors, a load balancing program that adjusts the process-
ing load based at least in part on the measured processing
load, the load balancing program handles the cache
request by designating one of at least one cache server;
and

transmitting, to the one of the at least one application,

server an address of the one of the at least one cache
server corresponding to the cache request.

21. The computer-readable storage medium of claim 20,
wherein the programmable processor is an FPGA (Field Pro-
grammable Gate Array).

22. The computer-readable storage medium of claim 20,
wherein the operations further comprise:

comparing the processing load with a predetermined value;

and

adjusting the processing load based at least in part on the

comparing.

23. The computer-readable storage medium of claim 22,
wherein the adjusting comprises writing the load balancing
program into at least one of the plurality of programmable
processors.

24. The computer-readable storage medium of claim 20,
wherein the operations further comprise:

analyzing the cache request; and

determining the load balancing program from a plurality of

load balancing programs based at least in part on the
analyzing.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,158,593 B2 Page 1 of 1
APPLICATION NO. : 13/885394

DATED : October 13, 2015

INVENTORC(S) : Kurabayashi

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the specification
In Column 1, Line 7, delete “§371” and insert -- § 371 --, therefor.

In Column 5, Line 47, delete “TP address™ and insert -- IP address --, therefor.

Signed and Sealed this
Twenty-third Day of February, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

